Simulation and education

Manual ventilation devices in neonatal resuscitation: Tidal volume and positive pressure-provision

Charles C. Roehr*,1, Marcus Kelm*,1, Hendrik S. Fischer, Christoph Bührer, Gerd Schmalisch, Hans Proquitté

Clinic of Neonatology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

A R T I C L E I N F O

Article history:
Received 23 June 2009
Accepted 9 October 2009

Keywords:
Resuscitation
Neopuff
T-piece resuscitator
Self-inflating bag
Neonate
Preterm
Pressure
VLBW
CPAP
Respiratory function monitor

A B S T R A C T

Background: Excessive peak inspiratory pressures (PIP) and high tidal volumes (Vt) during manual ventilation can be detrimental to the neonatal lung. We compared the influence of different manual ventilation devices and individual professional experience on the extent of applied Vt and PIP in simulated neonatal resuscitation.

Material and methods: One hundred and twenty medical professionals were studied. An intubated mannequin (equivalent to 1.0 kg neonate) was ventilated using two different devices: a self-inflating bag and a T-piece resuscitator. Target value was a PIP of 20 cm H2O. Applied PIP and the resulting Vt were recorded continuously using a respiratory function monitor (CO2 SMO+, Novametrix, USA).

Results: Vt and PIP provision was significantly higher in SI-bags, compared to T-piece devices: median (interquartile range) PIP 25.6 (18.2) cm H2O vs 19.7 (3.2) cm H2O (p < 0.0005), and Vt 5.1(3.2) ml vs Vt 3.6 (0.8) ml (p < 0.0005) respectively. The intersubject variability of Vt and PIP provision was distinctly higher in SI-bags, compared to T-piece devices. Professional experience had no significant impact on the level and the variability of Vt or PIP provided.

Conclusion: Use of T-piece devices guarantees reliable and constant Vt and PIP provision, irrespective of individual, operator dependent variables. Methods to measure and to avoid excessive tidal volumes in neonatal resuscitation need to be developed.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Non-invasive respiratory support of the depressed newborn after birth is among the most frequently performed and pertinent manoeuvres in neonatal medicine, particularly in very low birth weight infants (VLBW).1 Earlier work by Dreyfuss and Saumon showed the harmful impact of a high volume stretch on the neonatal lung, caused by excessive peak inspiratory pressure (PIP) and high positive end expiratory pressure (PEEP).2 Due to the immaturity of the lung and thorax, VLBW infants are particularly vulnerable to baro- and volutrauma and consequently chronic lung disease.3 These insults to the respiratory system are often inflicted as early as during the initial management in the delivery room.4,5 However, routine monitoring of applied pressures (PIP or PEEP) and in particular tidal volumes (Vt) is not common practice in most delivery rooms (DR).6,7

The most commonly used devices for providing manual respiratory support are self-inflating bags (SI-bags). According to international surveys, these are being used in 83–92% of delivery units world wide.6–9 SI-bags are mostly used without pressure manometers or appropriate pressure control.7 Pressure limited devices, usually referred to as T-piece devices, have been commercially available for a number of years now. According to the above named surveys, near to 40% of units world wide now use such devices.7–9 The recent ILCOR and ERC guidelines equally recognize the SI-Bag and the T-piece device for neonatal resuscitation.10,11

T-piece devices were shown to be superior over SI-bags in delivering pressure controlled PIP and PEEP during manual ventilation.12–15 However, in adaption to the work by Hillman et al., we believe that in order to reduce neonatal lung injury not only PIP and PEEP need to be considered, but also the provision of high tidal volumes has to be avoided during neonatal resuscitation.16

Using a mannequin, we sought to compare the two most commonly used manual ventilation devices in terms of Vt and PIP...
provision in a large operator-collective matching the scenario of daily delivery room routine. We hypothesized that the provision of Vt and PIP depends both on the equipment and individual, operator dependent variables.

2. Materials and methods

2.1. Study population and design

In a prospective randomized cross-over design we investigated the individual performance of health care professionals from different fields of medicine involved in neonatal resuscitation. A total of 120 individuals were recruited at workshops held on neonatal resuscitation and stratified to their profession: 20 Paediatricians, 22 Obstetricians, 23 Anaesthesiologists, 30 Neonatal Nurses and 25 Midwives. In a standardized interview information was obtained regarding the number of neonatal resuscitations attended per year and exposure to formal resuscitation training.

2.1.1. Set up

We simulated neonatal resuscitation using a neonatal mannequin resembling a VLBW infant, approximating a 1 kg infants lung with a compliance of 0.2 ml kPa⁻¹ (Fisher & Paykel Healthcare, Auckland, NZ). The model was leak free, intubated and either the resuscitation bag or the T-piece device could be fitted on to the mannequin’s endotracheal tube. A continuous gas flow of 8l/min was delivered using wall mounted medical air. A pneumotachograph (CO₂SMO⁺, Novametrix Inc., Wellingford, CT, USA) was fitted at the interface between mannequin and resuscitation device to measure airflow, applied volume and pressure. These signals were recorded on a laptop computer.

2.1.2. Resuscitation devices

Two different manual ventilation devices were used: a new 240 ml Laerdal®-bag (Laerdal, Oslo, Norway) with a new Ambu®-10-PEEP-valve (Ambu, Denmark) set at 5 cm H₂O and a T-piece device (Neopuff®, Fisher & Paykel, Auckland, New Zealand) with the PEEP set at 5 cm H₂O. The T-piece device settings (PIP and PEEP) were set anew by each participant at the start of the experiment. In order to ensure that all tested individuals had an equal understanding of the use of both devices, we gave a brief tutorial on the theoretical background and means of operation of both devices prior to testing. The tutorial included reference to the expected respiratory rate, peak pressures and tidal volumes when managing a 1 kg neonate.

2.1.3. Scenario

The participants were given the scenario of an apnoeic newborn VLBW neonate in the DR, which had been already intubated and given surfactant by the team. Each participant was asked to manually ventilate at a PIP of 20 cm H₂O and a PEEP of 5 cm H₂O with a rate of approximately 60 breaths/min. The models chest excursions were visible throughout the experiment.

Data recording was blinded to the operator. The participants were separately investigated in random order with either an SI-bag or a T-piece device as the first device and changed to the second device thereafter. The order was reversed for every other participant. Manual ventilation for each device was recorded over a period of 3 min per participant (90 s for each device).

2.2. Statistical analysis

All data was tested for normality with a Kolmogorov–Smirnov-Test. Measured pressures and volumes are presented as median (interquartile range, IQR) unless otherwise stated. Non-parametric-tests were used for comparison of 2 (Mann–Whitney test) and more than 2 groups (Kruskal–Wallis-test). SPSS version 16.0 was used for statistical analysis (SPSS Inc., Chicago, IL, USA). A p-value <0.05 was considered significant.

3. Results

In total 120 professionals were tested and 23,300 respiratory cycles were analyzed. The participant’s characteristics are shown in Table 1.

The median Vt (inter quartile range, IQR) for the SI-bag of 5.1 (3.2) ml was significantly higher (p < 0.0005) compared to the T-piece device of 3.6 (0.8) ml. The lowest recorded Vt in the SI-bag group was 1 ml, the max. Vt was 14.6 ml. In the T-piece device, minimal Vt was 1.3 ml and max. Vt was 5.7 ml (Fig. 1).

The median PIP (IQR) for the SI-bag was 25.6 (18.2) cm H₂O and significantly higher (p < 0.001) compared to the T-piece device with 19.7 (0.6) cm H₂O (Fig. 2). The lowest recorded PIP for the SI-bag was 2.7 cm H₂O and the highest PIP was 59.8 cm H₂O. For the T-piece device, the minimum PIP was 10.5 cm H₂O and the max. 21.3 cm H₂O.

The median Ti for the SI-bag was 0.2 s compared to 0.4 s for the T-piece device (p < 0.005). The median respiratory rate for the SI-bag was 67/min and for the T-piece device 57.5/min (p = 0.015), respectively. We found no statistically significant difference in Vt or PIP provision between operators with frequent or infrequent exposure to neonatal resuscitation (Table 2) or between professional groups.

![Fig. 1. Comparison of applied tidal volume (Vt) in ml between both ventilation devices used.](image-url)
Oddie et al. Contrary to other authors, we found no significant
ence in neonatal resuscitation, are in keeping with Hussey et al.
levels of maximum PIPs delivered by SI-bag, irrespective of expe-
development, whereas too little PIP will not be to the benefit of
the patient either. We have previously been able to show the
devices: the T-piece device did allow better control of both Vt
comparison of systems according to individual experience in NR.

Table 2
Comparison of systems according to individual experience in NR.

<table>
<thead>
<tr>
<th>Experience: NR per year</th>
<th>n</th>
<th>SI-bags</th>
<th>T-piece device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>IQR 25–75%</td>
</tr>
<tr>
<td>PIP (cm H₂O)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>28.6</td>
<td>20.6</td>
</tr>
<tr>
<td>1–2</td>
<td>26</td>
<td>22.9</td>
<td>16</td>
</tr>
<tr>
<td>>2</td>
<td>34</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>Vt (ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>60</td>
<td>5.3</td>
<td>3.9</td>
</tr>
<tr>
<td>1–2</td>
<td>26</td>
<td>4.8</td>
<td>3.1</td>
</tr>
<tr>
<td>>2</td>
<td>34</td>
<td>4.1</td>
<td>3.4</td>
</tr>
</tbody>
</table>

4. Discussion

We investigated the device specific effects on the provision of Vt
and PIP in simulated neonatal resuscitation. To our knowledge, this
is the first study to compare Vt-values administered by two com-
monly used manual ventilation devices in a leak free scenario. We
found significant differences in provision of Vt and PIP between
devices: the T-piece device did allow better control of both Vt
and PIP provision. These observations are in keeping with those
of other authors. Concerning the operator dependent vari-
ations in PIP provision, our results are alike those of Hussey et al.,
who found no statistically significant difference in PIP provision
by professional experience when comparing a group of med-
ical professionals in using SI-bags, flow-inflating-bags or T-piece
resuscitators. Furthermore, our observations of heterogeneous
levels of maximum PIPs delivered by SI-bag, irrespective of expe-
rience in neonatal resuscitation, are in keeping with Hussey et al.
and Oddie et al. Contrary to other authors, we found no significant
difference when comparing professional groups. This was surpris-
ing and has prompted us to further investigate the relationship
between professional exposure to resuscitation and professional
training in resuscitation. Unlike as for instance in the USA, we did
not include measurements with flow-inflating-bags (anaesthesia
bags) in our investigation because we do not use these for resusci-
tation of premature infants in our unit.

Excessive pressures will most likely be harmful to further lung
development, whereas too little PIP will not be to the benefit of
the patient either. We have previously been able to show the
wide variation in PEEP provision by SI-bags. Similarly, the level of
applied PIP by SI-bag showed large intra- and inter-operator vari-
ability. The range of applied PIP by SI-bag span from 0 to 58 cm
H₂O, the use of such non-pressure limited devices, particularly in
the hand of the untrained healthcare professional is potentially
extremely dangerous. To the contrary, the use of a T-piece resusci-
tator led to PIP values ranging from 10 to 23 cm H₂O, hence over-
or under-inflation were better controlled for PIP values of less than
15 cm H₂O occurred with the T-piece in less than 0.3% (30/10,902)
of the analyzed ventilation curves. Some further findings of our
study do warrant comment: we used a Laerdal SI-bag, which had a
pop-off valve, set to open up at a PIP value of 35 cm H₂O. However,
peak pressures observed during our experiment often exceeded
35 cm H₂O, despite seemingly proper functioning of the pop-off
valve. We believe this is another point in favour of using pressure
controlled T-piece devices as first line tools for providing man-
ual respiratory support in neonatal resuscitation, particularly when
considering a gentle ventilation strategy in order to avoid excessive
neonatal volu- and barotrauma.

Our study has several limitations. First, we worked with a neonat-
tal mannequin in a laboratory setting. It will then be a matter of
further study to investigate whether our results can be directly
applied to the clinical setting. The artificial lungs and mannequin
were carefully designed to simulate a living baby, however, they
came without simulation of the dynamic changes in lung com-
pliance that can be observed once the neonatal lung is opened
and functional residual capacity has been established. However,
it remains to be studied whether such subjectively felt changes in
lung compliance do actually influence the operators’ ventilation
performance. Secondly, the model used was free of leak. To have a
leak free model is important when measuring respiratory param-
eters, which are easily affected by small changes in gas volume.
Other groups have recently looked into the extent of leak in neonat-
tal ventilation. Wood et al. have shown that irrespective of oper-
ator experience leak around face masks was above 50% under condi-
tions of simulated manual ventilation. However, the aim of
our study was not to investigate airway leak size. A leak of such
magnitude would have made most of our recordings impossible
to analyze. For the purpose of our research, we therefore chose
to investigate the device specific characteristics in a leak free and intu-
bated model. Other studies in this field have used similar scenarios,
however clinical studies are still being awaited.

To summarize our findings, the choice of device has the
strongest influence on Vt and PIP provision over any other con-
tributing factors during simulated NR. However, we believe that
regardless of the device used, both pressure and tidal volume con-
trol should become instrumental in NR. Further research should
focus on the implementation of Vt monitoring as a standard mon-
itoring parameter in routine neonatal care.

Conflict of interest

None.
References

5. O'Donnell CP, Davis PG, Morley CJ. Resuscitation of premature infants: what are we doing wrong and can we do better? Biol Neonate 2003;84:76–82.

